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Structured sparse methods for matrix factorization

Outline

• Learning problems on matrices

• Sparse methods for matrices

– Sparse principal component analysis

– Dictionary learning

• Structured sparse PCA/dictionary learning

– Structure on decomposition coefficients



Learning on matrices - Collaborative filtering

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.
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Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal, Bach, Ponce, Sapiro, and Zisserman (2009b)



Learning on matrices - Source separation

• Single microphone (Benaroya et al., 2006; Févotte et al., 2009)



Learning on matrices - Multi-task learning

• k linear prediction tasks on same covariates x ∈ R
p

– k weight vectors wj ∈ R
p

– Joint matrix of predictors W = (w1, . . . ,wk) ∈ R
p×k

• Classical applications

– Transfer learning

– Multi-category classification (one task per class) (Amit et al., 2007)

• Share parameters between tasks

– Joint variable or feature selection (Obozinski et al., 2009; Pontil

et al., 2007)



Learning on matrices - Dimension reduction

• Given data matrix X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
n×p

– Principal component analysis: xi ≈ Dαi

– K-means: xi ≈ dk ⇒ X = DA



Sparsity in machine learning

• Assumption: y = w⊤x+ ε, with w ∈ R
p sparse

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)

• Sparsity and convexity (ℓ1-norm regularization): min
w∈Rp

L(w) + ‖w‖1
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Two types of sparsity for matrices M ∈ R
n×p

I - Directly on the elements of M

• Many zero elements: Mij = 0

M

• Many zero rows (or columns): (Mi1, . . . ,Mip) = 0

M



Two types of sparsity for matrices M ∈ R
n×p

II - Through a factorization of M = UV⊤

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Low rank: m small

=

T

U
V

M

• Sparse decomposition: U sparse

U= VM
T



Structured sparse matrix factorizations

• Matrix M = UV⊤, U ∈ R
n×k and V ∈ R

p×k

• Structure on U and/or V

– Low-rank: U and V have few columns

– Dictionary learning / sparse PCA: U has many zeros

– Clustering (k-means): U ∈ {0, 1}n×m, U1 = 1

– Pointwise positivity: non negative matrix factorization (NMF)

– Specific patterns of zeros

– Low-rank + sparse (Candès et al., 2009)

– etc.

• Many applications

• Many open questions: Algorithms, identifiability, etc.



Sparse principal component analysis

• Given data X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent



Sparse principal component analysis

• Given data X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
p×n, two views of PCA:

– Analysis view: find the projection d ∈ R
p of maximum variance

(with deflation to obtain more components)

– Synthesis view: find the basis d1, . . . ,dk such that all xi have

low reconstruction error when decomposed on this basis

• For regular PCA, the two views are equivalent

• Sparse extensions

– Interpretability

– High-dimensional inference

– Two views are differents

∗ For analysis view, see d’Aspremont, Bach, and El Ghaoui (2008);

Journée, Nesterov, Richtárik, and Sepulchre (2010)



Sparse principal component analysis

Synthesis view

• Find d1, . . . ,dk ∈ R
p sparse so that

n∑

i=1

min
αi∈Rm

∥
∥
∥
∥
xi −

k∑

j=1

(αi)jdj

∥
∥
∥
∥

2

2

=
n∑

i=1

min
αi∈Rm

∥
∥xi −Dαi

∥
∥
2

2
is small

– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small
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– Look forA = (α1, . . . ,αn) ∈ R
k×n and D = (d1, . . . ,dk) ∈ R

p×k

such that D is sparse and ‖X−DA‖2F is small

• Sparse formulation (Witten et al., 2009; Bach et al., 2008)

– Penalize/constrain dj by the ℓ1-norm for sparsity

– Penalize/constrain αi by the ℓ2-norm to avoid trivial solutions

min
D,A

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

k∑

j=1

‖dj‖1 s.t. ∀i, ‖αi‖2 6 1



Structured matrix factorizations (Bach et al., 2008)

min
D,A

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

k∑

j=1

‖dj‖⋆ s.t. ∀i, ‖αi‖• 6 1

min
D,A

n∑

i=1

‖xi −Dαi‖
2

2
+ λ

n∑

i=1

‖αi‖• s.t. ∀j, ‖dj‖⋆ 6 1

• Optimization by alternating minimization (non-convex)

• αi decomposition coefficients (or “code”), dj dictionary elements

• Two related/equivalent problems:

– Sparse PCA = sparse dictionary (ℓ1-norm on dj)

– Dictionary learning = sparse decompositions (ℓ1-norm on αi)

(Olshausen and Field, 1997; Elad and Aharon, 2006; Lee et al.,

2007)



Dictionary learning for image denoising

x︸︷︷︸
measurements

= y
︸︷︷︸

original image

+ ε︸︷︷︸
noise



Dictionary learning for image denoising

• Solving the denoising problem (Elad and Aharon, 2006)

– Extract all overlapping 8× 8 patches xi ∈ R
64

– Form the matrix X = (x⊤
1
, . . . ,x⊤

n ) ∈ R
n×64

– Solve a matrix factorization problem:

min
D,A

||X−DA||2F = min
D,A

n∑

i=1

||xi −Dαi||
2

2

where A is sparse, and D is the dictionary

– Each patch is decomposed into xi = Dαi

– Average the reconstruction Dαi of each patch xi to reconstruct a

full-sized image

• The number of patches n is large (= number of pixels)



Online optimization for dictionary learning

min
A∈Rk×n,D∈D

n∑

i=1

||xi −Dαi||
2

2
+ λ||αi||1

D
△
= {D ∈ R

p×k s.t. ∀j = 1, . . . , k, ||dj||2 6 1}.

• Classical optimization alternates between D and A

• Good results, but very slow !



Online optimization for dictionary learning

min
A∈Rk×n,D∈D

n∑

i=1

||xi −Dαi||
2

2
+ λ||αi||1

D
△
= {D ∈ R

p×k s.t. ∀j = 1, . . . , k, ||dj||2 6 1}.

• Classical optimization alternates between D and A.

• Good results, but very slow !

• Online learning (Mairal, Bach, Ponce, and Sapiro, 2009a) can

– handle potentially infinite datasets

– adapt to dynamic training sets



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009b)



Denoising result

(Mairal, Bach, Ponce, Sapiro, and Zisserman, 2009b)



Inpainting a 12-Mpixel photograph



Inpainting a 12-Mpixel photograph
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Inpainting a 12-Mpixel photograph



Structured sparse methods for matrix factorization

Outline

• Learning problems on matrices

• Sparse methods for matrices

– Sparse principal component analysis

– Dictionary learning

• Structured sparse PCA/dictionary learning

– Structure on decomposition coefficients



Hierarchical dictionary learning

(Jenatton, Mairal, Obozinski, and Bach, 2010)

• Structure on codes α (not on dictionary D)

• Hierarchical penalization: ψ(α) =
∑

G∈G ‖αG‖2 where groups G in

G are equal to set of descendants of some nodes in a tree

• Variable selected after its ancestors (Zhao et al., 2009; Bach, 2008)



Hierarchical dictionary learning

Efficient optimization

min
A∈R

k×n

D∈R
p×k

n∑

i=1

‖xi −Dαi‖
2

2
+ λψ(αi) s.t. ∀j, ‖dj‖2 ≤ 1.

• Minimization with respect to αi : regularized least-squares

– Many algorithms dedicated to the ℓ1-norm ψ(α) = ‖α‖1

• Proximal methods : first-order methods with optimal convergence

rate (Nesterov, 2007; Beck and Teboulle, 2009)

– Requires solving many times minα∈Rp
1

2
‖y −α‖2

2
+ λψ(α)

• Tree-structured regularization : Efficient linear time algorithm

based on primal-dual decomposition (Jenatton et al., 2010)



Hierarchical dictionary learning

Application to image denoising

• Reconstruction of 100,000 8× 8 natural images patches

– Remove randomly subsampled pixels

– Reconstruct with matrix factorization and structured sparsity

noise 50 % 60 % 70 % 80 % 90 %

flat 19.3± 0.126.8± 0.136.7± 0.150.6± 0.072.1± 0.0

tree 18.6± 0.125.7± 0.135.0± 0.148.0± 0.065.9± 0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
50

60

70

80



Application to image denoising - Dictionary tree



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?



Hierarchical dictionary learning

Modelling of text corpora

• Each document is modelled through word counts

• Low-rank matrix factorization of word-document matrix

• Probabilistic topic models (Blei et al., 2003)

– Similar structures based on non parametric Bayesian methods (Blei

et al., 2004)

– Can we achieve similar performance with simple matrix

factorization formulation?

• Experiments:

– Qualitative: NIPS abstracts (1714 documents, 8274 words)

– Quantitative: newsgroup articles (1425 documents, 13312 words)



Modelling of text corpora - Dictionary tree



Modelling of text corpora

• Comparison on predicting newsgroup article subjects:
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Conclusion

• Structured matrix factorization has many applications

– Machine learning

– Image/signal processing

– Extensions to other tasks

• Algorithmic issues

– Large datasets

– Structured sparsity and convex optimization

• Theoretical issues

– Identifiability of structures and features

– Improved predictive performance

– Other approaches to sparsity and structure (e.g., submodularity)



Ongoing Work - Digital Zooming



Digital Zooming (Couzinie-Devy et al., 2010)
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Digital Zooming (Couzinie-Devy et al., 2010)



Ongoing Work - Task-driven dictionaries

inverse half-toning (Mairal et al., 2010)
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inverse half-toning (Mairal et al., 2010)



Ongoing Work - Inverse half-toning
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Ongoing Work - Inverse half-toning



Ongoing Work - Inverse half-toning
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